更新 README.md

This commit is contained in:
sunbiao 2024-11-09 14:43:46 +08:00
parent fecd355ae8
commit bee6ddbd11
1 changed files with 1 additions and 1 deletions

View File

@ -29,7 +29,7 @@
4 | Multi-Channel Neural Recording Implants: A Review | Sensors 20.3 (2020): 904 | Sawan教授的植入式脑机接口电路综述虽然发的期刊不好但是里边的电路结构很有参考价值 | 做植入式脑机接口和模拟电路方向的同学必读 | 孙彪 | [点此下载](https://www.mdpi.com/1424-8220/20/3/904) | 4 | Multi-Channel Neural Recording Implants: A Review | Sensors 20.3 (2020): 904 | Sawan教授的植入式脑机接口电路综述虽然发的期刊不好但是里边的电路结构很有参考价值 | 做植入式脑机接口和模拟电路方向的同学必读 | 孙彪 | [点此下载](https://www.mdpi.com/1424-8220/20/3/904) |
5 | Decoding the Nature of Emotion in the Brain | Trends in cognitive sciences 20.6 (2016): 444-455 | 脑机接口情绪识别综述 | 做情绪识别的同学必读 | 孙彪 | [点此下载](https://www.cell.com/trends/cognitive-sciences/fulltext/S1364-6613(16)30004-3) | 5 | Decoding the Nature of Emotion in the Brain | Trends in cognitive sciences 20.6 (2016): 444-455 | 脑机接口情绪识别综述 | 做情绪识别的同学必读 | 孙彪 | [点此下载](https://www.cell.com/trends/cognitive-sciences/fulltext/S1364-6613(16)30004-3) |
6 | Machine Learning for Neural Decoding | Trends in cognitive sciences 20.6 (2016): 444-455 | 入门方法文章,介绍了常见机器学习方法用于神经解码的描述和代码 | 脑机接口方向同学必读 | 孙彪 | [点此下载](https://www.cell.com/trends/cognitive-sciences/abstract/S1364-6613(16)30004-3) | 6 | Machine Learning for Neural Decoding | Trends in cognitive sciences 20.6 (2016): 444-455 | 入门方法文章,介绍了常见机器学习方法用于神经解码的描述和代码 | 脑机接口方向同学必读 | 孙彪 | [点此下载](https://www.cell.com/trends/cognitive-sciences/abstract/S1364-6613(16)30004-3) |
7 | Deep learning approaches for neural decoding across architectures and recording modalities | Briefings in bioinformatics 22.2 (2021): 1577-1591 | 深度学习方法应用于神经解码的综述介绍了RNN和CNN等方法 | 脑机接口方向同学必读 孙彪 | [点此下载](https://academic.oup.com/bib/article-abstract/22/2/1577/6054827) | 7 | Deep learning approaches for neural decoding across architectures and recording modalities | Briefings in bioinformatics 22.2 (2021): 1577-1591 | 深度学习方法应用于神经解码的综述介绍了RNN和CNN等方法 | 脑机接口方向同学必读 | 孙彪 | [点此下载](https://academic.oup.com/bib/article-abstract/22/2/1577/6054827) |
8 | A Neural Probe with Up to 966 Electrodes and Up to 384 Configurable Channels in 0.13um SOI CMOS | IEEE transactions on biomedical circuits and systems 11.3 (2017): 510-522 | Neuropixels的电路版本和Nature文章同时发表的讲述了很多电路实现方面的细节 | 我们后续研发感算一体电极时,单元设计可以参考该文章,尤其是一些电路方面的设计对我们很有启发 | 孙彪 | [点此下载](https://ieeexplore.ieee.org/abstract/document/7900417/) | 8 | A Neural Probe with Up to 966 Electrodes and Up to 384 Configurable Channels in 0.13um SOI CMOS | IEEE transactions on biomedical circuits and systems 11.3 (2017): 510-522 | Neuropixels的电路版本和Nature文章同时发表的讲述了很多电路实现方面的细节 | 我们后续研发感算一体电极时,单元设计可以参考该文章,尤其是一些电路方面的设计对我们很有启发 | 孙彪 | [点此下载](https://ieeexplore.ieee.org/abstract/document/7900417/) |
9 | Deep compressive autoencoder for action potential compression in large-scale neural recording | Journal of neural engineering 15.6 (2018): 066019 | 杨知教授组的文章使用autoencoder来做神经信号压缩性能很好 | 做神经信号压缩和量化的同学必读并且可以作为对比的baseline | 孙彪 | [点此下载](https://iopscience.iop.org/article/10.1088/1741-2552/aae18d/meta) 9 | Deep compressive autoencoder for action potential compression in large-scale neural recording | Journal of neural engineering 15.6 (2018): 066019 | 杨知教授组的文章使用autoencoder来做神经信号压缩性能很好 | 做神经信号压缩和量化的同学必读并且可以作为对比的baseline | 孙彪 | [点此下载](https://iopscience.iop.org/article/10.1088/1741-2552/aae18d/meta)
10 | Sparse Bayesian Learning for End-to-End EEG Decoding | IEEE Transactions on Pattern Analysis and Machine Intelligence 45.12 (2023): 15632-15649 | David Wipf是SBL的创始人他把SBL用在EEG信号解码上 | 神经解码方向同学必读可以考虑把SBL做成电路 | 孙彪 | [点此下载](https://ieeexplore.ieee.org/abstract/document/10197212) 10 | Sparse Bayesian Learning for End-to-End EEG Decoding | IEEE Transactions on Pattern Analysis and Machine Intelligence 45.12 (2023): 15632-15649 | David Wipf是SBL的创始人他把SBL用在EEG信号解码上 | 神经解码方向同学必读可以考虑把SBL做成电路 | 孙彪 | [点此下载](https://ieeexplore.ieee.org/abstract/document/10197212)